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Mechanistic understanding of arsenic
speciation can help predict its behavior in

subsurface environments 

• Can we use geochemical scenarios to categorize
potential As mobilization? 

• How do we optimize kinetics of biogeochemical
processes to enhance natural As attenuation? 

Geochemical Parameters: 
-- Amount of labile iron 
-- Amount of sulfur available for reduction/oxidation
-- pH & Eh (local and gradients)
-- Role of nitrogen species? 
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Arsenic Speciation in the Environment
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Arsenic Minerals
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Arsenic Speciation & Partitioning:

Tied to Major Element Chemistry
 

• Precipitation important
for sulfides and sulfates 

• Adsorption: Strongly
associates with Iron 
hydroxides/oxides;
competitive sorbates? 

• Organic carbon and

microbial activity
 

• Microbial coupling/

competition with

Nitrogen species?
 



 

Haiwee Reservoir, Owens Valley
 

• Aqueduct water dosed with FeCl3 to remove As
 

• Deposition of high Fe, low S sediments with
sorbed As(V) 



Haiwee Reservoir, Owens Valley
 



Haiwee Reservoir: Core Sediments
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High Iron, low Sulfur, Carbon System
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Goethite 

Dixit & Hering (2003) ES&T 37, 4182-4189 



 

  

 

  

High Iron, low Sulfur, Carbon System
 

• Reductive dissolution of sorbent Fe(OH)3 
releases As 

• Low potential for Sulfur reduction -- no removal by
sulfides 

• Reduction of As(V) to As(III) -- may remain 
sorbed 

• As(III) sorption depends on pH, competitive sorbates,
available sorbents 



 
 

Bay Road Site

East Palo Alto CA.
 

• Tidal influence 
• Sulfate reducing SiteSite 
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Natural Arsenic Attenuation
 

Bay Road Site, East Palo Alto 
(CA, USA):
Subsurface plume below former
sodium arsenite herbicide & 
pesticide manufacturing facility
(1926-71) 

Contaminant Plume: 
[AsT] in Groundwater 
 Up to 100 mg l-1
 
[AsT] in Sediments 
 Up to 1000 mg kg-1 
Down-gradient of Plume:

[AsT] in Groundwater 
 <0.01 mg l-1 
[AsT] in Sediments 
 Natural Background 





Seasonal variation in well water level compared to

tidal variation and rainfall (8/15/01-1/15/02)
 

TIDAL VARIATION 

RAIN FALL 

WATER LEVEL 



Sediment Arsenic, Iron, & Organic Carbon
 

Root, 2003 
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As-Fe-S Speciation
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Green Rust: GRII: FeII6FeIII2(OH)16(SO4).4H2O
 



Solid & Adsorbed Solid & Adsorbed AqueousAqueous
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O’Day et al., in review

 

[As]T =100 uM 
[SO4]T = 28 mM 
pH = 7 

Deciphering biotic vs. abiotic
reaction rates 

O’Day et al. (2004) PNAS 101, 13703-13708 



 

 

 

Soil Amendments for As Stabilization
 
Bay Road Site
 

Amendments: 
Ferrous sulfate (3% w/w)
Portland Cement (Type V, 10% w/w) 

As Concentrations:
 
500-5000 mg/kg 

Treatments: 
1992, 1996, 2000
1-9 m depth
surface capped 



Microfocused Synchrotron XRD:

Bay Road Field Samples
 

SEM 



 

 

 

 

Soil Amendments for As Stabilization
 

• Arsenate incorporated into

crystalline sulfate phases
 

• No evidence for reduction 

to As(III) after 10+ years
 

• High pH stabilized 

• Aging process relatively rapid -- weeks?
(experiments in progress) 



 

-- Rates? 
-- Sorption Capacity? 

-- Limited by rate of

sulfate reduction
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Assessing the Potential for Arsenic 
Mobilization 

• Rates of reductive dissolution of Fe(III) and Fe(II,III)
(hydr)oxides and potential release of sorbed As 

• pH-dependent desorption and competitive effects 
(phosphate, sulfate, silica)

• Rates of sulfate reduction and production of As-
bearing sulfides; rates of re-oxidation

• Influence of N species on As-Fe-S redox rates 
• Cost/benefit of amendment stabilization
• Validation of reactive transport models: accurate 

coupling of biogeochemical and hydrologic processes 


	Structure Bookmarks



